
Application of an improved procedure for testing the linearity
of analytical methods to pharmaceutical analysis

Howard Mark *

Mark Electronics, 21 Terrace Avenue, Suffern, NY 10901, USA

Received 12 July 2002; accepted 27 March 2003

Abstract

Examination of the requirements of the Food and Drug Administration (FDA) for evaluating the linearity of an

analytical method reveals them to be unsatisfactory, in both the definition of linearity and in the specifications for

testing this property of an analytical method. A new definition for linearity is proposed, along with a new method for

evaluating this property of an analytical method, one that is consistent with the definition. The method is tested by re-

evaluating the linearity of data collected from a Near-Infrared method of analysis of pharmaceutical preparations.
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1. Introduction

When the Food and Drug Administration

(FDA) evaluates whether an analytical method is

‘‘suitable for its intended purpose’’, proof of which

is essentially the definition of ‘‘validated’’, it

considers a large number of characteristics of

that method. Not all of those characteristics are

necessarily required to be demonstrated in every

case. Evaluation of the linearity of the relationship

between the actual analyte concentration and the

test result from the method, however, is required

for quantitation testing for impurities, and for

assay methods.

The requirement for linearity is independent of

the technology used to ascertain the analyte

concentration. In the end, even the most modern

instrumental methods that rely on multivariate

chemometric computer methods have to produce a

number that represents the final answer for that

analyte, and that is the test result from that

instrument. This term, therefore, holds good for

every analytical methodology from manual wet

chemistry to the latest high-tech instrument.
Many analytical methods are known where the

relationship between the raw measured data and

the analyte concentrations are non-linear. Electro-

chemical measurements, for example, rely on the

Nernst equation, which indicates a logarithmic

relationship between the cell voltage and the

analyte concentration. Spectroscopic measure-

ments rely on Beer’s Law, which also expresses a
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logarithmic relationship between the measured
transmittance data and absorbance, absorbance

being the quantity that theoretically is propor-

tional to the analyte concentration.

Using spectroscopy as the basis for the discus-

sion here, we find that while Beer’s Law shows that

the measured absorbance is proportional to con-

centration, in practice many sources of interfer-

ence can occur which will cause deviations from
the theory. For example, stray light will cause

deviations from linearity at low transmittance

levels, as will excessive bandwidth of the mono-

chromator. Saturation of the detector, or opera-

tion at too high a signal level will make the

detector response become non-linear with respect

to the optical energy, which will make the com-

puted absorbance non-linear (with respect to
concentration) at high energy levels (i.e. high

transmittance of the sample). Other effects also

exist.

‘‘Linearity’’ is defined in section 7 of the

Glossary to [1] as:

‘‘The linearity of an analytical procedure is

its ability (within a given range) to obtain
test results which are directly proportional to

the concentration (amount) of analyte in the

sample’’.

The following quote is found in section III of [2]:

‘‘In some cases, to obtain linearity between

assays and sample concentrations, the test
data may have to be subjected to a mathe-

matical transformation prior to the regres-

sion analysis’’.

This quote clearly indicates that if the raw data

is not itself linearly related to the analyte concen-

trations, then it may be made linear through a

mathematical transformation. As indicated above,

any suitable mathematical function may be used
for the linearization process.

The guidelines also contain the following pas-

sage (in section III of [2]):

‘‘If there is a linear relationship, test results

should be evaluated by appropriate statisti-

cal methods, for example, by the calculation
of a regression line by the method of least

squares’’.

This passage, then, applies to testing the rela-

tionship for linearity. Thus, as currently written,

there is a distinction drawn between making the

relationship between raw data and concentrations
become linear through a mathematical transfor-

mation (which may make use of any suitable

mathematical function), and testing whether that

relationship, after transformation, is linear (which

is currently specified to make use only of straight

lines). Thus there is a difference between lineariz-

ing the relationship, and testing whether the

linearization was successful, and it is important
to distinguish between the types of mathematical

functions that are currently specified to be used for

the two activities.

The FDA/ICH guidelines provide a definition of

the meaning of the term ‘‘linearity’’, given above.

This definition is an extremely strict one, one

which is unattainable in practice when noise and

error are taken into account. Fig. 1 illustrates the
problem with this definition. Fig. 1 shows sche-

matically a plot of a set of hypothetical data that

most would agree represents a substantially linear

relationship between the test result and the analyte

concentration. While there is a line that meets the

criterion that ‘‘test results are directly proportional

to the concentration of analyte in the sample’’,

none of the data points fall on that line. Therefore,
in the strict sense of the phrase, none of the data

representing the test results can be said to be

proportional to the analyte concentration. In the

Fig. 1. A representation of linear data.
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face of non-linearity of response, there are addi-
tional, systematic, departures from the line, as well

as random departures, but in neither case is any

data point strictly proportional to the concentra-

tion.

Less strict descriptions of linearity are also

provided. One recommendation is visual examina-

tion of a plot (unspecified, but presumably also of

the method response vs. the analyte concentra-
tion); this method is also recommended by Taylor

[3] and by Meier and Zund [4]. This method works

fairly well, but is subjective and not amenable to

the application of statistical tests, making an

objective mathematical evaluation unattainable.

It also is open to different interpretations, and is

unsuitable for the application of computerized or

automated screening methods.
Another recommendation in the guidelines is to

use ‘‘statistical methods’’; calculation of a linear

regression line is advised. This is not so much a

definition of linearity as an attempt to evaluate it.

If regression is performed, then the correlation

coefficient, slope, y-intercept and residual sum of

squares are to be reported. There is no indication

given, however, as to how these quantities are to
be related to linearity, and as Anscombe shows,

they are not [5]. Anscombe presents several

(synthetic) data sets, to which he then fits a

straight line using Least Squares regression, as

the guidelines recommend. One data set is sub-

stantially linear (much as the plot represented in

Fig. 1 is substantially linear), while another is a

data set that is obviously very non-linear. Other
data sets have other faults. When linear regression

is performed on any of these data sets as recom-

mended by the guidelines, all the recommended

regression statistics are identical for the different

sets of data. It is immediately obvious, therefore,

that the regression results cannot distinguish

between the different cases, since the regression

results are the same for all of them.
Other linearity tests exist, in addition to the ones

in the official guidelines. The Durbin�/Watson

(DW) statistic [6�/11] has been proposed [12,13]

as a statistically-based test method for evaluating

linearity. While a step in the right direction, upon

close examination the DW statistic is found to

have a fatal flaw: The value that DW should have

is two, for residuals from regression data that meet
all the theoretical requirements, i.e. that are

random, independent, have a Gaussian distribu-

tion and represent a linear relation between the

two variables. In statistical jargon, they have an

expected value of two (see, for example, pages

180�/185 in [11]). However, calculating the DW

statistic for the data sequence:

0; 1; 0; �1; 0; 1; 0; �1; 0; 1; 0; �1; . . .

also results in a computed value of two, despite the

fact that this sequence is non-random, non-inde-

pendent, does not have a Gaussian distribution

and is definitely not linear. Thus we expect that

any set of residuals showing a similar cyclic

behavior will also compute out to a value of DW

that will erroneously indicate satisfactory behavior

of the residuals, creating a rather insidious fault in
this test.

A somewhat similar test is based on a statistical

F -test, as recommended by Taylor (see page 102 in

[3]) and also by Hald [14] and by Dixon and

Massey [15]. This F -test is based on comparing

within-sample estimates of precision to the overall

error of the analysis. Ideally they should be the

same, but if non-linearity is present, the overall
error will be larger (by a statistically significant

amount) than the within-sample precision. Unfor-

tunately this test is not only, as Taylor states,

insensitive but also suffers from the difficulty that

any bias in the estimates of the concentration will

inflate the F -value and be taken as an indicator of

non-linearity when in fact some other phenom-

enon is affecting the data. Furthermore it requires
multiple readings of every sample by both the

method under test and the method used to

determine the actual concentration of the analyte,

making it impractical to apply on a routine basis,

and inapplicable to already-existing data.

Hald [14] also recommends testing whether the

residuals have a Gaussian distribution, since it is

unlikely that the residuals will be so distributed if
there is appreciable non-linearity in the relation-

ship between concentration and the test results.

While that is true, the test is non-specific; this test

is again very insensitive to actual non-linearity

(especially for small numbers of samples), and

furthermore suffers from the same difficulties as
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the preceding test (the F -test), in that other types
problems with the data may be erroneously called

non-linearity.

Therefore, none of these methods are completely

satisfactory. In fact, the recommendations of the

official guidelines for evaluating linearity, both the

definitions and the recommended method(s) for

assessing it, while well-intended are themselves not

suitable for their intended purpose in this regard.
Therefore, let us start by proposing a definition

that circumvents the problems of the above

definitions and that can serve as a basis for further

discussion. We, therefore, propose to define line-

arity as follows: ‘‘Linear data is data where the

relationship between analyte concentrations and

test results can be fitted (in the Least-Squares

sense) as well by a straight line as by any other
function’’.

In this article we present the details concerning a

new method of testing the linearity of data. A

previous note [16] examined the feasibility of the

method by testing it on Anscombe’s synthetic

data, but it was never used to verify the linearity

of real data, neither were any details concerning its

operation presented. The application of the
method to Anscombe’s data shows it to be

extremely promising as a replacement for the

unsatisfactory methods currently specified. In

this paper we, therefore, present the derivation

and details of the operation of this new method of

evaluating data, and report on it’s ability to test

linearity by applying it to data from a real

analytical method: a method of NIR spectroscopic
analysis using diffuse transmittance measure-

ments. This data was collected as part of a

validation study and was previously published

[13].

2. Theory

We propose a method of determining non-
linearity (or showing linearity) that bears a close

resemblance to the current method of assessing

linearity that the FDA and ICH guidelines re-

commend (that of fitting a straight line to the data,

and assessing the goodness of the fit). But as we

showed, based on the work of Anscombe [5], the

currently recommended method for assessing lin-
earity is faulty because it cannot distinguish linear

from non-linear data.

An extension of that method, however, can. As

with our definition of linearity (given above), our

test almost seems to be the same as the FDA/ICH

approach, which we discredited. The difference is

that we include the possibility of fitting other

functions to the data and comparing the fits,
whereas the FDA/ICH guidelines only specify

trying to fit a straight line to the data. Our test is

also in line with out proposed definition of

linearity: conceptually, we can try to fit functions

other than a straight line to the data, and if we

cannot obtain an improved fit, we can conclude

that the data is linear.

It is possible to fit other functions to a set of
data using least-squared mathematics. In fact, the

well-known Savitzky�/Golay (S�/G) algorithm is

based on fitting polynomials to data [17]. We differ

from S�/G in that, while S�/G fits a polynomial to

small sections of the data, we extend it to fit the

polynomial to the entire data set at once, rather

than a few points at a time. Many texts exist

dealing with this subject, but we will follow the
presentation of Arden [18]. Arden points out and

discusses in detail, many applications of numerical

analysis, but they share common characteristics.

The data is assumed to be univariate and to follow

the form of some arbitrary mathematical function,

where the nature of the function may be undeter-

mined. From Taylor’s theorem, however, any

function can be approximated by a polynomial,
although the degree of the polynomial may also

not be known a priori (the ‘‘degree’’ of a poly-

nomial being the highest power to which the

variable is raised in that polynomial). Through

the application of Taylor’s theorem, therefore,

polynomials become a surrogate for ‘‘any mathe-

matical function’’.

Polynomials have occasionally been used for
other aspects of calibration in data analysis, in the

manner shown by Mandel (see page 100 in [19],

Meier and Zund [4] use this method similarly).

Mandel did what we mention elsewhere in this

paper: he used an orthogonal quadratic polyno-

mial to improve the fit of a function to a data set,

after non-linearity was established. But it is
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repetitive to say that this technique has not

previously been used as a means of testing for

non-linearity, as opposed to reducing or eliminat-

ing it.
Our current goal is not to approximate the

relationship between test results and analyte con-

centration as well as possible, but only to ascertain

whether a straight line fits the data as well as a

polynomial. We will see that for this purpose we

need not use polynomials of high degree.

The presentation in Arden’s book, which we

follow, makes the assumption that there is a single

(univariate) mathematical system (corresponding

to ‘‘analyte concentration’’ and ‘‘test reading’’),

and that there is a functional relationship between

these two variables of interest, although again, the

nature of the relationship may be unknown. The

function is approximated by a polynomial, and

any given polynomial must minimize the sum of

the squares of the differences between each datum

and the corresponding point of the polynomial.

By far the easiest type of polynomial to deal

with, and therefore, the most widely used approx-

imating functions are simple polynomials; these

are also convenient in that they are the direct result

of applying Taylor’s theorem, since Taylor’s

theorem produces a description of a polynomial

that estimates the function being reproduced:

Y�a0�a1X�a2X2�a3X3� . . .�anXn (1)

where X and Y correspond to the test results and

the analyte concentrations. Often a polynomial of

degree 2 (quadratic) can provide a satisfactory fit

to the data. Polynomials of higher degree may

provide a better fit, if the data requires it.

The mathematics of fitting a polynomial by least

squares are relatively straightforward, and we

sketch the derivation here following Arden, but

as we shall see is rather generic: Starting from

equation 1, we want to find coefficients (the ai)

that minimize the sum-squared difference between

the data and the function’s estimate of that data,

given a set of values of X. Therefore, we first form

the desired differences:

D�a0�a1X�a2X2�a3X3� . . .�anXn�Y

(2)

Then we square those differences and sum those

squares over all the sets of data (corresponding to

the samples used to generate the data);

X
i

D2�
X

i
(a0�a1X�a2X2�a3X3� . . .

�anXn�Y)2 (3)

The problem now is to find a set of values for the
ai that minimizes a D2. We do this by the usual

procedure of taking the derivative and setting it

equal to zero. In this case, we take the derivative of

a D2 with respect to each ai and set each of those

derivatives equal to zero. Since there are multiple

ai, this creates not one, but a whole set of

equations. There are n�/1 different ai (including

a0), therefore, we wind up with n�/1 equations,
although here we only show the first three of the

set for our exposition:

@

�X
i

D2

�
=@a0

�@

�X
(a0�a1X�a2X2�a3X3� . . .�anXn

�Y)2

�
=@a0

�0 (4a)

@

�X
i

D2

�
=@a1

�@

�X
(a0�a1X�a2X2�a3X3� . . .�anXn

�Y)2

�
=@a1

�0 (4b)

H. Mark / J. Pharm. Biomed. Anal. 33 (2003) 7�/20 11



@

�X
i

D2

�
=@a2

�@

�X
(a0�a1X�a2X2�a3X3� . . .�anXn

�Y)2

�
=@a2

�0 (4c)

etc.

The details consist of taking the indicated

derivative of each term (while noting that

@ðai F2Þ�2 ai F @F (where F is the inner sum-
mation of the ai X)), separating the summations,

dividing by two to eliminate the constant term and

subtracting the term involving Y from each side of

the resulting equation. All this puts the equations

into their final form. The details can be found in

chapter 9 in Arden [18], here we show only the

result:

a0

X
(1)�a1

X
i

X�a2

X
i

X2�a3

X
i

X3

� . . .�an

X
i

Xn

�
X

i
Y (5a)

a0

X
i

X�a1

X
i

X2�a2

X
i

X3

�a3

X
i

X4� . . .�an

X
i

Xn�1

�
X

i
XY (5b)

a0

X
i

X2�a1

X
i

X3�a2

X
i

X4

�a3

X
i

X5� . . .�an

X
i

Xn�2

�
X

i
X2Y (5c)

etc.

The values of X and Y are known since they

constitute the data, and therefore, the summa-

tions, once evaluated, are constants. Therefore,

Eqs. (5a), (5b) and (5c) comprise a set of n�/1

equations in n�/1 unknowns, the unknowns being

the various values of the ai. Therefore, solving Eqs.
(5a), (5b) and (5c) as simultaneous equations for

the ai results in the calculation of the coefficients

that describe the polynomial (of degree n) that best

fits (in the least squares sense) the data.

In principle, the relationships described by Eqs.

(5a), (5b) and (5c) could be used directly to

construct a function that relates test results to
sample concentrations. In practice we find that

correlation between the various powers of X is an

important consideration that must be taken into

account. We find, for example, that if we square

each of the numbers in the sequence �1 . . . 10�,

creating the corresponding sequence �1, 4, 9, 16,

. . . 100�, and then apply the formula for calculat-

ing the correlation coefficient to the two se-
quences, we find that the correlation coefficient

of the integers from 1 to10 with their squares is

0.974*/a rather high value. The formula for

calculating correlation coefficient is [11]:

r�

Xn

i�1

(xi � X̄ )(yi � Ȳ )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1

(xi � X̄ )2
Xn

i�1

(yi � Ȳ )2

vuut

where: r represents the correlation coefficient; Xi,

Yi represent individual data points; n represents

the number of x, y pairs; X̄ ; Ȳ represent the means

of the x and y values, respectively.

Correlation effects are of concern for us. Our

goal is to formulate a method of testing linearity in
such a way that the results can be justified

statistically. Ultimately we will perform statistical

testing on the coefficients of the fitting function

that we use. We will use a t-test to see whether any

given coefficient is statistically significant, com-

pared with the standard error of that coefficient.

We do not need to solve the general problem,

however, just as we do not need to create the
general solution implied by equation 1. In the

broadest sense, equation 1 is the basis for comput-

ing the best-fitting function to a given set of data,

but that is not our goal. Our goal is only to

determine whether the data represent a linear

function or not. To this end it suffices to ascertain

only whether the data can be fit better by any

polynomial of degree greater than 1, than it can by
a straight line (which itself is a polynomial of

degree 1). To this end we need to test a polynomial

of degree higher than 1. While in some cases, the

use of more terms may be warranted, as we shall

see, we need test only the ability to fit the data

using only one term of degree greater than one.
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Hence, while in general we may wish to try fitting
equations of degrees 3, 4, . . . m (where m is some

upper limit less than n), we need begin by using

only polynomials of degree 2, i.e. quadratic fits.

A complication arises, caused by the correlation

effects. We learn from the theory of multiple

regression analysis, that when two (or more)

variables are correlated, the standard error of

both variables is increased over what would be
obtained if equivalent but uncorrelated variables

are used. This is discussed by Daniel and Wood

(see page 55 in [20]), who show that the variance of

the estimates of coefficients (from their standard

errors) is increased by a factor of;

VIF�1=(1�R2) (6)

when there is correlation between the independent

(X) variables, where R represents the correlation
coefficient between the variables and we use the

abbreviation VIF, as is sometimes done, to mean

Variance Inflation Factor. Arden describes a

general method for removing the correlation

between the various powers of X in a polynomial,

based on the use of orthogonal Chebyshev poly-

nomials. Other types of orthogonal polynomials

also exist and could be used, such as Legendre
polynomials, Jacobi polynomials, and others.

But this method is unnecessarily complicated for

our current purposes, and in any case has a severe

limitation of its own; when applied to actual data.

Chebyshev and other types of orthogonal poly-

nomials are orthogonal only if the data is uni-

formly, or at least symmetrically, distributed along

the X-axis; in practical applications, real data will
seldom meet that requirement.

Since we do not need to deal with the general

case, we can use a simpler method to orthogona-

lize the variables, one also based on the presenta-

tion of Daniel and Wood, who describe a

transformation that makes the square of that

variable uncorrelated with the variable itself.

This is done by computing a new variable Z with
the property that for the given data set, (X�/Z)2 is

uncorrelated with X. Thus, once Z is computed, it

is subtracted from each of the original values of X

and the result is squared. A symmetric distribution

of the data is not required since the data distribu-

tion is taken into account in the formula. Z is

calculated, by imposing the condition that (X�/Z)2

is to be uncorrelated with X, this requires that the

condition:X
i
(Xi�X̄ )(Xi�Z)2�0 (7)

must be met (where the summation is taken over

all the samples in the set). The formula on the left-

hand side of equation 7 is essentially the numera-

tor of the formula for the correlation coefficient
between X and (X�/Z)2. Solving equation 7 for Z

is not obvious, therefore, we will show how to

solve equation 7 for Z. First expand the square

term in equation 7;X
i
(Xi�X̄ )(X2

i �2XiZ�Z2)�0 (8)

Then multiply through and collect terms:X
i
(X2

i (Xi�X̄ )�2XiZ(Xi�X̄ )�Z2(Xi�X̄ ))

�0 (9)

Separate the summations and bring constants

outside the summations:X
i

X2
i (Xi�X̄ )�2Z

X
i

Xi(Xi�X̄ )

�Z2
X

i
(Xi�X̄ )

�0 (10)

Since ai(Xi�X̄ )�0; the last term in equation
10 vanishes, leaving:X

i
X2

i (Xi�X̄ )�2Z
X

i
Xi(Xi�X̄ )�0 (11)

Equation 11 is now easily rearranged explicitly

for Z:

Z�

XN

i�1

X2
i (Xi � X̄ )

2
XN

i�1

Xi(Xi � X̄ )

(12)

It is also relatively straightforward to show that
equation 12 is equivalent to the expression on page

121 in [20]. Thus we see that equation 12 (or the

one in [20]) provides the value of Z that causes

(X�/Z)2 to be uncorrelated with X. Z will equal X̄

if the data are symmetrically (or uniformly)

distributed as is the case of Mandel’s data [19].

but in the general case will not equal X̄ :/
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Creating an orthogonal variable using equation
12 provides the advantage that the data in the

resulting variable is orthogonal to the original X

data regardless of the distribution of the X values.

This procedure can, therefore, be applied to a set

of real data without concern for the distribution of

that data.

It is also possible to set up expressions corre-

sponding to equation 7, for representing terms that
are the numerators of the correlation coefficients

between X and the third, fourth, and even higher

powers of (X�/Z):

X
i
(Xi�X̄ )(Xi�Z3)3�0 (15A)X

i
(Xi�X̄ )(Xi�Z4)4�0 (15B)

where the various Zi represent the value of Z

needed to make the variable for the corresponding

power of X uncorrelated with X itself. Solving

each of the Eqs. (15A) and (15B) for the corre-
sponding Zi will provide a value that creates a term

for the corresponding power of X that is uncorre-

lated with X. From Eq. (15A) we obtain the

expression;

Z2
3

X
i

Xi(Xi�X̄ )�Z3

X
i

X2
i (Xi�X̄ )�

1

3

�
X

i

X3
i (Xi�X̄ )

�0 (16A)

which is quadratic in Z3 and may be solved by the

usual formula, or by an approximation method
(also discussed by Arden [18]). Application of this

formula to several sets of test data followed by

further study of the behavior of polynomials of

odd degree (specifically, the relation between X

and X3) reveals that for any data that could

represent actual validation data, no real roots of

the equation exist; the roots of Eq. (16A) are

complex (in the sense of being of the mathematical
form a�/bi, where i represents the square root of

�/1.

Similarly, Eq. (15B) results in the following

expression, which is cubic in Z4, and which can

also be solved using either known algebraic

methods [21], or approximation methods:

Z3
4

X
i

Xi(Xi�X̄ )�
6

4
Z2

4

X
i

X2
i (Xi�X̄ )�Z4

�
X

i

X3
i (Xi�X̄ )�

1

4

X
i

X4
i (Xi�X̄ )

�0 (16B)

Since Eq. (16B) is cubic in Z4, it is guaranteed to

have at least one real root, and linearity testing can

proceed. Arguing by induction, we conclude that
polynomials of even degree are amenable to this

procedure, while polynomials of odd degree are

not. We will shortly see, however, that this

consideration is moot, even though similar expres-

sions can be generated to correspond to higher

powers of X, to create corresponding variables for

powers of X that are uncorrelated to X.

While Z4 is not necessarily orthogonal to Z, it is
orthogonal to the data (X), and so will all powers

of (X�/Zi) be orthogonal to X. Therefore, each

one could be tested separately, for as many terms

as are needed to make up a polynomial of the

desired degree, if this were necessary. Should it

become necessary to evaluate non-linearity terms

that are represented by higher powers of Xi they

need not be evaluated simultaneously, each vari-
able: (X�/Z)2, (X�/Z4)4, etc. can each be evaluated

separately, preventing possible intercorrelations

between the Zi from influencing the results.

Taylor’s theorem tells us that, while any func-

tion can be approximated by a polynomial the

terms of a Taylor expansion results in coefficients

of the polynomials that necessarily decrease for

higher powers of the polynomial, due to the
presence of n! in the denominator of the Taylor

formula (where n represents the power of any

given term). Therefore, Taylor’s theorem tells us

that we will rarely, if ever, have to go beyond the

quadratic term, so the issue of orthogonality of

terms, as well as the problem of polynomials of

odd degree; all become moot. Testing data for

quadratic non-linearity will suffice to reveal the
presence of any nonlinearity in the data.

At this point we note that equations 7, and

indeed the whole derivation leading to them is

familiar to us, in a different context. In using

spectroscopy to do quantitative analysis, we use an

equation for a calibration model similar to equa-
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tion 1 to express Beer’s Law; one of the represen-
tations of the equation involved is [22]:

C�b0�b1X1�b2X2� . . .�bnXn (17)

Equation 17 is commonly used to represent the

equations needed for doing quantitative spectro-

scopic analysis using what is called the MLR

algorithm (also sometimes called P-matrix or

Inverse Least Squares). The various Xi in equation
17 represent entirely different variables, in spectro-

scopic analysis they are absorbances at different

wavelengths. Nevertheless, starting from equation

17, we can derive the set of equations for calculat-

ing the MLR calibration coefficients, in exactly the

same way we derived equations 7 from equation 1.

This derivation is found in [11] and also in [22].

Comparison of those derivations with equations
1�/7 is instructive, they are exactly parallel. Be-

cause of this parallelism we can set up the

following equivalencies:

and we see that by using Xi (X�/Z)2, (X�/Z4)4, etc.

as the MLR variables X1, X2, X4, etc. respectively,

we can use the common and well-understood

statistical methods (and computer programs) of

multiple regression analysis to perform the neces-

sary calculations. A consideration of key impor-

tance is that, along with the values of the

coefficients of the various powers of X, we can

obtain all the common statistical estimates of

variances, standard errors, goodness of fit, etc.

that these computer programs produce for us,

along with the ones specified by the FDA. Of

special interest is the fact that many programs

compute estimates of the standard errors of the

coefficients, as described by Draper and Smith

(see, for example, page 129 in [11]). This allows

testing the statistical significance of each of the

coefficients, which, as we recall, are now the

coefficients of the various powers of X that

comprise the polynomial we are fitting to the data.

This is the basis of the new test for non-linearity.

We need not use polynomials of high degree since

our goal is not necessarily to fit the data as well as

possible. Especially since we expect that well-

behaved methods of chemical analysis will produce

results that are already close to being linearly

related to the analyte concentrations, we expect

non-linear terms to decrease as the power of X

increases. Thus we need only test the fit of a

quadratic equation to the data to test for linearity,

although there is nothing to stop us from testing

equations of higher degree if we choose. Data well-

described by a linear equation will produce a set of

coefficients with a statistically-significant value for

the term X1 (which is X, of course) and

small, statistically non-significant values for the

coefficients of the variables representing X2 or

higher powers of X.
One ‘‘recipe’’ for performing the test is, there-

fore, as follows:

1) Ascertain the actual concentration (Y) of the

analyte and measure the test result (X).

2) Compute Z from the test results according to

equation 12.

3) Compute the new variable (X�/Z)2 from each

value of X.

4) Regress X and (X�/Z)2 against Y, using an

MLR program that computes the desired

Coefficient equivalences Data equivalences

MLR coefficient Corresponding polynomial
coefficient

MLR variable Corresponding polynomial
coefficient

b0 a0

b1 a1 X1 X

b2 a2 X2 (X�/Z)2

b4 a4 X4 (X�/Z4)4

etc. etc. etc. etc.

H. Mark / J. Pharm. Biomed. Anal. 33 (2003) 7�/20 15



statistics (it is required that the t-value for the
coefficients is included among these statistics).

5) Inspect the t statistic of the coefficients of X

and (X�/Z)2, to determine if the linear term is

statistically significant and whether the t value

for the coefficient of (X�/Z)2 indicates statis-

tical significance; if so, that indicates that

statistically significant nonlinearity exists.

This test procedure has several advantages: it

gives an objective, unambiguous determination,

based on standard statistical methodology, of
whether any non-linearity is present in the rela-

tionship between the test results and analyte

concentration. Since it is based on regression

analysis, it is a straightforward extension of the

method currently specified by the FDA. It pro-

vides a means of distinguishing between different

types of non-linearity (i.e. the need for polyno-

mials of various degrees, if necessary in different
situations), if they are present, since only those

that have statistically-significant coefficients are

active. It is also more sensitive than the DW

statistic as well as being immune to the ‘‘fatal

flaw’’ that afflicts DW. Because of the extreme

variability of DW for small numbers of samples,

the tables in Draper and Smith for the thresholds

of the DW statistic only give the values for more
than ten samples. Since this new method of

linearity testing depends on calculating the t value

rather than comparing variances, it is applicable to

data from smaller numbers of samples.

3. Experimental

Two groups of workers independently devised

nearly identical measurement protocols to validate

analytical methods for similar sample types; the

details are described in [13]. Briefly, FOSS/NIR-

Systems model 6500 NIR spectrometers, each

fitted with IntactTM tablet analyzer modules were
used to collect transmittance spectra of the sam-

ples. One group was measuring tablets, the other

group was measuring capsules, and the main

difference between the experimental setups was

that each group used a sample mask specific to

their samples. The data spectra used were each the

result of averaging together 32 scans, the default
value for the instrument.

Except for a few very rare situations, NIR

analysis requires that the instrument and calibra-

tion algorithm be ‘‘trained’’ using actual samples

of the same type that are to be measured. The vast

majority of attempts to calibrate the instruments

through the use of standard samples have failed,

resulting in inaccurate answers when applied to
‘‘real’’ samples. For this reason, many books exist

that discuss the principles of NIR analysis and

how to implement proper calibration methodology

[23�/27]. The requirement to use actual samples for

the calibration exercise means that the calibration

process is considerably more extensive than is

needed for other technologies. The reward for

going through that exercise is an analytical method
that is rapid (usuallyB/1 min), requires no chemi-

cals (with the concomitant advantage of not

having to dispose of them) and, being computer-

controlled, is easily interfaced to both process

control and corporate data-management compu-

ters. For these reasons, NIR is likely to play a

major role in the FDA’s current PAT initiative. It

is not feasible to reproduce in this article the
extensive discussions found in the books; all of the

listed books are recommended to the reader

interested in further study. Since analysis using

NIR spectroscopy requires that the samples have

their concentrations measured using a method of

known accuracy to provide reference values, the

reference values for the samples used in this study

were measured using already-validated HPLC
methods appropriate for each sample type.

All calculations were performed using programs

written in MATLAB
TM.

4. Results and discussion

Details about the samples used are presented in

[13]. For the tablet study 96 samples were used for
the calibration, and 42 samples were used as an

independent test set. Plots of the NIR (test

method) versus HPLC (reference method) values

is presented in Fig. 2.

Similarly, for the capsule study 70 samples were

used for the calibration, and 210 samples were
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used as an independent test set. Plots of the NIR

(test method) versus HPLC (reference method)

values is presented in Fig. 3.

To the eye, all sets of data appear satisfactorily

linear. The plot of the test data for the capsule

product reveals, not surprisingly for process sam-

ples, that the range of the values for the test

samples is extremely limited. As we will see, this

affects the statistics that are computed for this

data, especially the correlation coefficient. In the

previous study [13] the DW statistic also was

computed to assess the linearity of these data,

the conclusion of that test also was that these data

show no evidence of non-linearity.

Tables 1 and 2 present the results of applying

the new linearity test to the tablet product and the

capsule product, respectively. The test was applied

separately to the calibration data, and to the test

data for each product. For comparison purposes, a

straight line, as recommended by the current

guidelines, was also fitted to each data set.

From Table 1 of [13] we find that there were 96

samples in the calibration set for tablets, 70

samples in the calibration set for capsules, 42

samples in the validation set for tablets and 210

samples in the validation set for capsules. The

corresponding critical values for the t statistic with

those numbers of samples, for a two-tailed test at

Fig. 2. Plots of the NIR vs. the HPLC values for the tablet product. (A) calibration data. (B) test data.
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99% confidence, are, from [28]: 2.6291, 2.6501,

2.6981 and 2.6006, respectively. Comparing the t-

values in Tables 1 and 2 to these critical values, we

find that the t-values for the linear term of the

regression is statistically significant in all cases,

and except for the test set for the capsule product,

where the limited range affected the results, they

were all highly significant. The low value of

correlation coefficient for the test set from the

capsule product indicates that the limited range is

the cause of the low values for all the statistics. Use

of the t-value for evaluating the linear term is

superior to the use of the correlation coefficient

(specified by the guidelines), since tables of critical

values of t are more common and easier to

evaluate than are tables of critical values for the

correlation coefficient. Furthermore, having a

known statistical value for testing the significance

of the linear term provides an objective test for

whether there is indeed sufficient data for making

the evaluation; from Fig. 3C alone it is not at all

clear whether this is the case, due to the limited

range of the data.

Similarly, we find that the quadratic terms are

non-significant, consistent with and confirming the

previous results, but through the use of a test

statistic that is more specific, more easily inter-

preted and in more common use. Having two

coefficients with their corresponding t-values se-

parates the linear from the non-linear contribu-

tions to the relationship, and yet as a multivariate

method allows both pieces of the relationship to be

tested separately but simultaneously. In this case

there is no reason to suspect higher-order non-

Fig. 3. Plots of the NIR vs. the HPLC values for the capsule product. (A) Calibration data. (B) Test data.
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linearity, but if there were, these could also be

tested by including the variables corresponding to

the higher-degree polynomials, as indicated by the

expressions presented in Eqs. (16A) and (16B), or

their obvious extensions.

5. Conclusions

The new test of linearity can provide an

objective, unambiguous decision tool as to

whether a given data set exhibits non-linearity in

the relationship between the test results and the

analyte concentration. It also provides all the

statistical results that the current FDA/ICH test

procedure recommends, in a context that makes

those statistics more meaningful. Through the

computation of auxiliary diagnostic statistics,

such as the Standard Error of Estimate (S.E.E.)

and the Correlation Coefficient, it also provides

information as to whether, and how well, an

analytical method gives a good fit of the test

Table 1

The results of testing the linearity of the data from the tablet product

Parameter Coefficient when using only

linear term

t-value when using only

linear term

Coefficient including

quadratic term

t-value including

quadratic term

Results for calibration data

Constant 0.000 �/0.3376

Linear term 1.0000 85.62 1.0000 86.4

Square term �/ �/ 0.0007 1.67

S.E.E.a 2.42 2.39

Rb 0.9937 0.9938

Results for test data

Constant 2.37 2.53

Linear term 0.9917 52.3 0.9917 51.92

Square term �/ �/ �/0.0004 �/0.693

S.E.E.a 2.24 2.26

Rb 0.9928 0.9928

a S.E.E., standard error of estimate.
b R, correlation coefficient.

Table 2

The results of testing the linearity of the data from the capsule product

Parameter Coefficient when using only

linear term

t-value when using only

linear term

Coefficient including

quadratic term

t-value when including

quadratic term

Results for calibration data

Constant �/0.0022 0.0434

Linear term 1.0000 129.7 1.0000 128.8

Square term �/ �/ �/0.0001 �/0.175

S.E.E.a 1.90 1.92

Rb 0.9980 0.9980

Results for test data

Constant 90.19 90.39

Linear term 0.3986 6.26 0.3988 6.3213

Square term �/ �/ �/0.0359 �/2.14

S.E.Ea 2.11 2.09

Rb 0.3986 0.4209

a S.E.E., standard error of estimate.
b R, correlation coefficient.
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results to the actual concentration values. It can
distinguish between different types of non-linear-

ities, if necessary, while simultaneously evaluating

the overall goodness of the fitting function.

In application to the current set of test data, we

find that the results of using an NIR analytical

method provides a linear relationship between the

test result (from the NIR method) and the actual

concentration of the analyte (as measured by the
validated reference HPLC method).

In Section 2, we discuss the fact that polyno-

mials may be used as surrogates for ‘‘any mathe-

matical function’’ since by virtue of Taylor’s

theorem, any mathematical function can be ap-

proximated to any desired degree of accuracy by

including sufficiently many terms of the Taylor

expansion of the function. FDA guidelines recom-
mend that ‘‘. . . the simplest model that adequately

describes the relationship. . .’’ should be used. This

implies that the polynomial of lowest degree that

can be used for the given purpose should be used.

At the other end of the scale, it is well-known that

if n data pairs are available, they can always be fit

exactly by a polynomial of degree (n�/1), but such

fits are virtually always spurious. Thus a poly-
nomial of intermediate degree must be selected for

the test. Arguably, there is room for subjectivity in

the selection of the degree of the polynomial. The

lowest-degree polynomial that can be used for

testing linearity is a quadratic. In the absence of

evidence to the contrary, and in the light of the

FDA guideline, therefore, this is what should be

used, and so I recommend.
Since the fitting of the polynomial is the surrogate

for fitting ‘‘any other function’’, and the use of the t-

test from a multivariate least-squares calculation is

a means of assessing the contribution of a term of

degree greater than unity to the fitting function over

that of the straight line alone, therefore, this method

of testing linearity conforms to the definition of

‘‘Linearity’’ as stated in Section 1.
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